Geometric characterization of tripotents in real and complex JB∗-triples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Little Grothendieck’s theorem for real JB*-triples

We prove that given a real JB*-triple E, and a real Hilbert space H , then the set of those bounded linear operators T from E toH , such that there exists a norm one functionalφ ∈ E∗ and corresponding pre-Hilbertian semi-norm ‖.‖φ on E such that ‖T (x)‖ ≤ 4 √ 2‖T‖ ‖x‖φ for all x ∈ E, is norm dense in the set of all bounded linear operators from E toH . As a tool for the above result, we show th...

متن کامل

Subdifferentiability of the norm and the Banach-Stone Theorem for real and complex JB∗-triples

We study the points of strong subdifferentiability for the norm of a real JB∗-triple. As a consequence we describe weakly compact real JB∗-triples and rediscover the Banach-Stone Theorem for complex JB∗-triples.

متن کامل

On the axiomatic definition of real JB∗–triples

In the last twenty years, a theory of real Jordan triples has been developed. In 1994 T. Dang and B. Russo introduced the concept of J∗B–triple. These J∗B–triples include real C∗–algebras and complex JB∗–triples. However, concerning J∗B–triples, an important problem was left open. Indeed, the question was whether the complexification of a J∗B–triple is a complex JB∗–triple in some norm extendin...

متن کامل

On summing operators on JB * - triples

In this paper we introduce 2-JB*-triple-summing operators on real and complex JB*-triples. These operators generalize 2-C*-summing operators on C*-algebras. We also obtain a Pietsch’s factorization theorem in the setting of 2-JB*-triple-summing operators on JB*-triples.

متن کامل

Separate weak * - continuity of the triple product in dual real JB * - triples

We prove that, ifE is a real JB*-triple having a predualE∗ , then E∗ is the unique predual of E and the triple product on E is separately σ(E,E∗)−continuous. Mathematics Subject Classification (1991):17C65, 46K70, 46L05, 46L10, 46L70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2004

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.02.027